3.326 \(\int \frac {(a+b x^2+c x^4)^{3/2}}{x^3 (d+e x^2)} \, dx\)

Optimal. Leaf size=562 \[ \frac {a^{3/2} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}+\frac {b e \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2}+\frac {\sqrt {a+b x^2+c x^4} \left (-2 c e (5 b d-4 a e)+b^2 e^2-2 c e x^2 (2 c d-b e)+8 c^2 d^2\right )}{16 c d^2 e}-\frac {(2 c d-b e) \left (-4 c e (2 b d-3 a e)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2 e^2}-\frac {e \left (8 a c+b^2+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c} d}+\frac {\left (a e^2-b d e+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2 e^2}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}+\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {3 \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 d} \]

[Out]

-1/2*(c*x^4+b*x^2+a)^(3/2)/d/x^2+1/2*a^(3/2)*e*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d^2+1/32
*b*(-12*a*c+b^2)*e*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/c^(3/2)/d^2-1/32*(-b*e+2*c*d)*(8*c^2
*d^2-b^2*e^2-4*c*e*(-3*a*e+2*b*d))*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/c^(3/2)/d^2/e^2+1/2*
(a*e^2-b*d*e+c*d^2)^(3/2)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^4+b*x^2+a)^(
1/2))/d^2/e^2-3/4*b*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))*a^(1/2)/d+3/16*(4*a*c+b^2)*arctanh(
1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d/c^(1/2)+3/8*(2*c*x^2+3*b)*(c*x^4+b*x^2+a)^(1/2)/d-1/16*e*(2*b
*c*x^2+8*a*c+b^2)*(c*x^4+b*x^2+a)^(1/2)/c/d^2+1/16*(8*c^2*d^2+b^2*e^2-2*c*e*(-4*a*e+5*b*d)-2*c*e*(-b*e+2*c*d)*
x^2)*(c*x^4+b*x^2+a)^(1/2)/c/d^2/e

________________________________________________________________________________________

Rubi [A]  time = 0.92, antiderivative size = 562, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {1251, 960, 732, 814, 843, 621, 206, 724, 734} \[ \frac {a^{3/2} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}+\frac {\sqrt {a+b x^2+c x^4} \left (-2 c e (5 b d-4 a e)+b^2 e^2-2 c e x^2 (2 c d-b e)+8 c^2 d^2\right )}{16 c d^2 e}-\frac {(2 c d-b e) \left (-4 c e (2 b d-3 a e)-b^2 e^2+8 c^2 d^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2 e^2}+\frac {b e \left (b^2-12 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2}-\frac {e \left (8 a c+b^2+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c} d}+\frac {\left (a e^2-b d e+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2 e^2}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}+\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {3 \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2 + c*x^4)^(3/2)/(x^3*(d + e*x^2)),x]

[Out]

(3*(3*b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(8*d) - (e*(b^2 + 8*a*c + 2*b*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/(16*
c*d^2) + ((8*c^2*d^2 + b^2*e^2 - 2*c*e*(5*b*d - 4*a*e) - 2*c*e*(2*c*d - b*e)*x^2)*Sqrt[a + b*x^2 + c*x^4])/(16
*c*d^2*e) - (a + b*x^2 + c*x^4)^(3/2)/(2*d*x^2) - (3*Sqrt[a]*b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2
 + c*x^4])])/(4*d) + (a^(3/2)*e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2) + (3*(b^2
+ 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(16*Sqrt[c]*d) + (b*(b^2 - 12*a*c)*e*ArcT
anh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(32*c^(3/2)*d^2) - ((2*c*d - b*e)*(8*c^2*d^2 - b^2*e^2
 - 4*c*e*(2*b*d - 3*a*e))*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(32*c^(3/2)*d^2*e^2) + (
(c*d^2 - b*d*e + a*e^2)^(3/2)*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a
+ b*x^2 + c*x^4])])/(2*d^2*e^2)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^3 \left (d+e x^2\right )} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\left (a+b x+c x^2\right )^{3/2}}{x^2 (d+e x)} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {\left (a+b x+c x^2\right )^{3/2}}{d x^2}-\frac {e \left (a+b x+c x^2\right )^{3/2}}{d^2 x}+\frac {e^2 \left (a+b x+c x^2\right )^{3/2}}{d^2 (d+e x)}\right ) \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b x+c x^2\right )^{3/2}}{x^2} \, dx,x,x^2\right )}{2 d}-\frac {e \operatorname {Subst}\left (\int \frac {\left (a+b x+c x^2\right )^{3/2}}{x} \, dx,x,x^2\right )}{2 d^2}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\left (a+b x+c x^2\right )^{3/2}}{d+e x} \, dx,x,x^2\right )}{2 d^2}\\ &=-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}+\frac {3 \operatorname {Subst}\left (\int \frac {(b+2 c x) \sqrt {a+b x+c x^2}}{x} \, dx,x,x^2\right )}{4 d}+\frac {e \operatorname {Subst}\left (\int \frac {(-2 a-b x) \sqrt {a+b x+c x^2}}{x} \, dx,x,x^2\right )}{4 d^2}-\frac {e \operatorname {Subst}\left (\int \frac {(b d-2 a e+(2 c d-b e) x) \sqrt {a+b x+c x^2}}{d+e x} \, dx,x,x^2\right )}{4 d^2}\\ &=\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {e \left (b^2+8 a c+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2 e}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}-\frac {3 \operatorname {Subst}\left (\int \frac {-4 a b c-c \left (b^2+4 a c\right ) x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{16 c d}+\frac {\operatorname {Subst}\left (\int \frac {\frac {1}{2} \left (4 c e (b d-2 a e)^2-d (2 c d-b e) \left (4 b c d-b^2 e-4 a c e\right )\right )-\frac {1}{2} (2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{16 c d^2 e}-\frac {e \operatorname {Subst}\left (\int \frac {8 a^2 c-\frac {1}{2} b \left (b^2-12 a c\right ) x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{16 c d^2}\\ &=\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {e \left (b^2+8 a c+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2 e}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}+\frac {(3 a b) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d}+\frac {\left (3 \left (b^2+4 a c\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{16 d}-\frac {\left (a^2 e\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}+\frac {\left (b \left (b^2-12 a c\right ) e\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{32 c d^2}+\frac {\left (c d^2-b d e+a e^2\right )^2 \operatorname {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2 e^2}-\frac {\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{32 c d^2 e^2}\\ &=\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {e \left (b^2+8 a c+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2 e}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}-\frac {(3 a b) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 d}+\frac {\left (3 \left (b^2+4 a c\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{8 d}+\frac {\left (a^2 e\right ) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d^2}+\frac {\left (b \left (b^2-12 a c\right ) e\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{16 c d^2}-\frac {\left (c d^2-b d e+a e^2\right )^2 \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d^2 e^2}-\frac {\left ((2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{16 c d^2 e^2}\\ &=\frac {3 \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}}{8 d}-\frac {e \left (b^2+8 a c+2 b c x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2}+\frac {\left (8 c^2 d^2+b^2 e^2-2 c e (5 b d-4 a e)-2 c e (2 c d-b e) x^2\right ) \sqrt {a+b x^2+c x^4}}{16 c d^2 e}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 d x^2}-\frac {3 \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 d}+\frac {a^{3/2} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}+\frac {3 \left (b^2+4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c} d}+\frac {b \left (b^2-12 a c\right ) e \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2}-\frac {(2 c d-b e) \left (8 c^2 d^2-b^2 e^2-4 c e (2 b d-3 a e)\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{32 c^{3/2} d^2 e^2}+\frac {\left (c d^2-b d e+a e^2\right )^{3/2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2 e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.50, size = 240, normalized size = 0.43 \[ \frac {1}{4} \left (-\frac {2 \left (x^2 \left (e (a e-b d)+c d^2\right )^{3/2} \tanh ^{-1}\left (\frac {2 a e-b d+b e x^2-2 c d x^2}{2 \sqrt {a+b x^2+c x^4} \sqrt {e (a e-b d)+c d^2}}\right )+d e \sqrt {a+b x^2+c x^4} \left (a e-c d x^2\right )\right )}{d^2 e^2 x^2}+\frac {\sqrt {a} (2 a e-3 b d) \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{d^2}-\frac {\sqrt {c} (2 c d-3 b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{e^2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2 + c*x^4)^(3/2)/(x^3*(d + e*x^2)),x]

[Out]

((Sqrt[a]*(-3*b*d + 2*a*e)*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/d^2 - (Sqrt[c]*(2*c*d -
 3*b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/e^2 - (2*(d*e*(a*e - c*d*x^2)*Sqrt[a + b*x
^2 + c*x^4] + (c*d^2 + e*(-(b*d) + a*e))^(3/2)*x^2*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x^2 + b*e*x^2)/(2*Sqrt[c*d^
2 + e*(-(b*d) + a*e)]*Sqrt[a + b*x^2 + c*x^4])]))/(d^2*e^2*x^2))/4

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3/(e*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.03, size = 1207, normalized size = 2.15 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(3/2)/x^3/(e*x^2+d),x)

[Out]

1/2/e*c*(c*x^4+b*x^2+a)^(1/2)-3/4/d*a^(1/2)*b*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)-1/2/d*a/x^2*
(c*x^4+b*x^2+a)^(1/2)+3/4/e*b*c^(1/2)*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))-1/2/e^2*d*c^(3/2)*ln((c*
x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*
(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+
c*d^2)/e^2)^(1/2))/(x^2+d/e))*b^2+1/2/d^2*e*a^(3/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)-1/2*e/
d^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^
2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a^2+1/d/((a*e^
2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1
/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a*b-1/e/((a*e^2-b*d*e+c*
d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+
d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a*c-1/2/e^3*d^2/((a*e^2-b*d*e+c*d^
2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/
e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*c^2+1/e^2*d/((a*e^2-b*d*e+c*d^2)/e^2
)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c
+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*b*c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}}{{\left (e x^{2} + d\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3/(e*x^2+d),x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)/((e*x^2 + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,x^4+b\,x^2+a\right )}^{3/2}}{x^3\,\left (e\,x^2+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^(3/2)/(x^3*(d + e*x^2)),x)

[Out]

int((a + b*x^2 + c*x^4)^(3/2)/(x^3*(d + e*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}{x^{3} \left (d + e x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(3/2)/x**3/(e*x**2+d),x)

[Out]

Integral((a + b*x**2 + c*x**4)**(3/2)/(x**3*(d + e*x**2)), x)

________________________________________________________________________________________